X
首页 >> 学术报告 >> 正文

学术报告:邵井海教授(天津大学)

2024年06月03日 17:09  点击:[]


题  目: Optimal control problem for continuous-time decision processes with history-dependent policies

报告人:邵井海 教授

位:天津大学

  间:2024615日(星期六)900-1000

  点:肇庆学院第二会议室

摘  要: This paper investigates the optimal control problems for the finite-horizon continuous-time decision processes with history-dependent control policies. We develop compactification methods in decision processes and show that the existence of optimal policies. Subsequently, through the dynamic programming principle of the delay-dependent control policies, the differential-difference Hamilton-Jacobi-Bellman (HJB) equation in the setting of discrete space was established. Under certain conditions, we give the comparison principle and further prove that the value function is the unique viscosity solution to this HJB equation. Based on this, we show that among the class of delay-dependent control policies, there is an optimal one which is Markovian.

报告人简介: 邵井海,天津大学应用数学中心教授,博士生导师。2006 年获得北京师范大学与法国第戎大学理学博士学位,同年在北京师范大学留校任教。2007年,赴德国伯恩大学跟随 K. Sturm 教授做两年博士后研究。2017 年被天津大学聘为教授。主要主要从事概率论遍历性理论、随机分析、随机微分方程方面的研究工作,在轨道空间和环空间上运输不等式、Monge-Kantorovich最优映射问题,以及带切换扩散过程长时间行为等问题的研究中取得了一些重要成果。多篇论文发表在著名数学刊物,包括 J.Functional Analysis, Probability Theory and Related Fields,SIAM J. Control Optim, SIAM J. Math. Anal., Stochastic Processes and their Applications2007 年,邵井海教授获得中国数学学会钟家庆数学奖2008 年,获得全国百篇优秀博士学位论文奖

上一条:学术报告:朱全新教授(湖南师范大学) 下一条:广东省现场统计学会2023学术年会在我校召开

关闭